منابع مشابه
Filtrations in Semisimple Rings
In this paper, we describe the maximal bounded Z-filtrations of Artinian semisimple rings. These turn out to be the filtrations associated to finite Z-gradings. We also consider simple Artinian rings with involution, in characteristic 6= 2, and we determine those bounded Z-filtrations that are maximal subject to being stable under the action of the involution. Finally, we briefly discuss the an...
متن کاملSemisimple Strongly Graded Rings
Let G be a finite group and R a strongly G-graded ring. The question of when R is semisimple (meaning in this paper semisimple artinian) has been studied by several authors. The most classical result is Maschke’s Theorem for group rings. For crossed products over fields there is a satisfactory answer given by Aljadeff and Robinson [3]. Another partial answer for skew group rings was given by Al...
متن کاملMaximal Quotient Rings and Essential Right Ideals in Group Rings of Locally Finite Groups
MAXIMAL QUOTIENT RINGS AND ESSENTIAL RIGHT IDEALS IN GROUP RINGS OF LOCALLY FINITE GROUPS Theorem . zero . FERRAN CEDÓ * AND BRIAN HARTLEY Dedicated to the memory of Pere Menal Let k be a commutative field . Let G be a locally finite group without elements of order p in case char k = p > 0 . In this paper it is proved that the type I. part of the maximal right quotient ring of the group algebgr...
متن کاملMaximal Quotient Rings1
Let R be an associative ring in which an identity element is not assumed. A right quotient ring of P is an overring 5 such that for each aQS there corresponds rQR such that arQR and ar 9*0. A theorem of R. E. Johnson [l ] states that R possesses a right quotient ring S which is a (von Neumann) regular ring if and only if P has vanishing right singular ideal. In this case P possesses a unique (u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1967
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1967-0214624-3